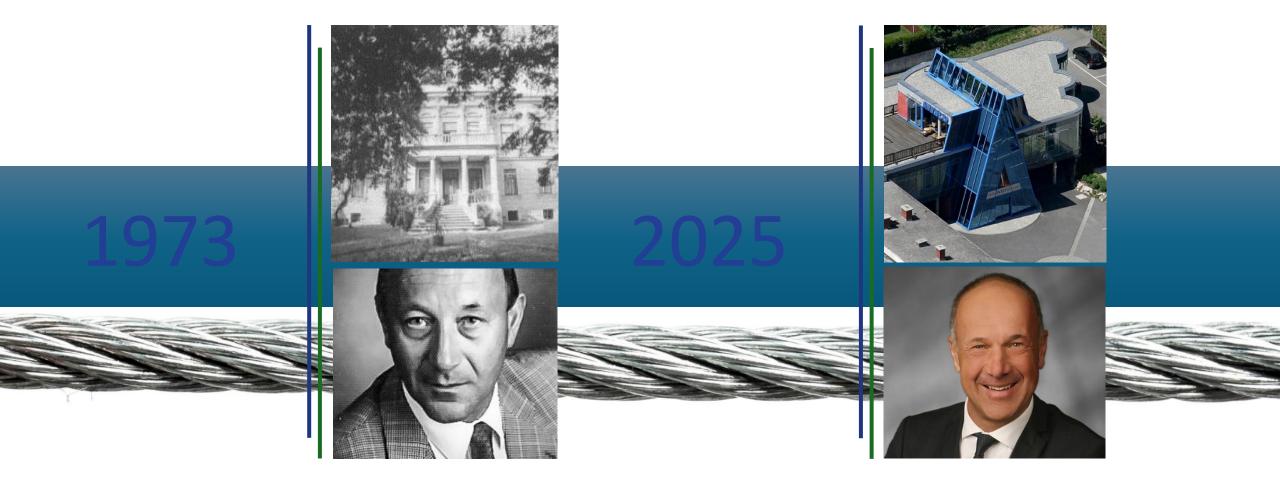
Zero-emission, low-cost hydrogen


via Methane pyrolysis as pathway to green steel

Harald Holzgruber CEO Inteco Holding

Family Business

Tradition over generations

Good to know...

Founded as **IN**ternational **TE**chnical **CO**nsulting

1000++ years of experience

Headoffices in Bruck/Mur, AUSTRIA

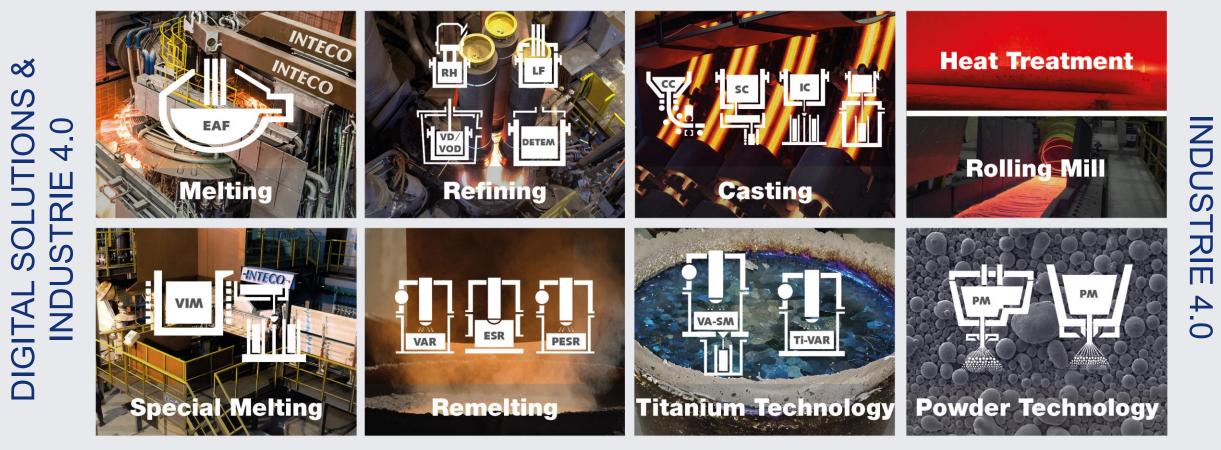
Global presence: 10 subsidiaries

Turnover of ~ 100 Mio. € / year

INTECO's Product Portfolio

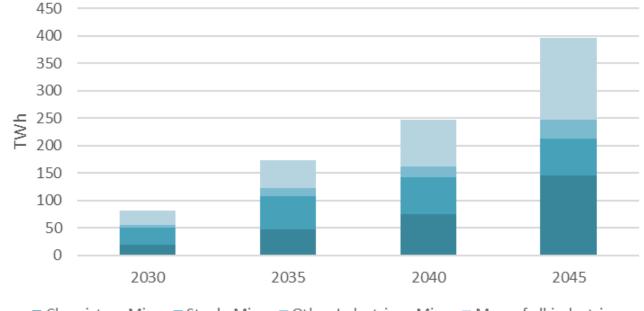
Š

SOL


PROCESS KNOW-HOW & CONSULTING

DIGITAI

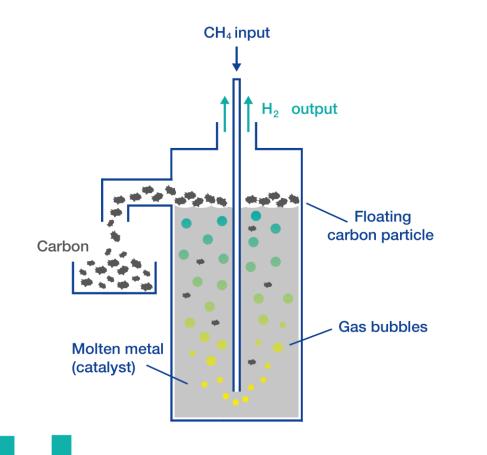
S


SNOI

Qo

PROCESS KNOW-HOW & CONSULTING

H₂ demand for steel industy


Chemistry - Min. Steel - Min. Other Industries - Min. Max. of all industries

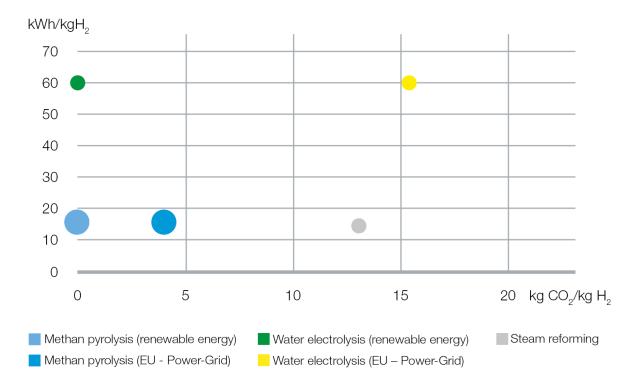
Forecast hydrogen demand of German industry – *Nationaler Wasserstoffrat* (May 2024)

- Minimum demand of 67 TWh (2 Mio ton) by 2045 only for <u>Germany steel</u> industry
- Up to 400 TWh for entire German industry by 2045
- Applications:
 - Reduction agent (DRI)
 - Energy carrier for high temperature processes such as:
 - EAF burner systems
 - Industrial furnaces

Methane pyrolysis - Principle

Liquid metal bubble column reactor

7


• Thermo(-catalytic) cracking

•
$$CH_4 \rightarrow H_2 + C_{solid}$$

- Conversion rate > 70 %
 - Perfect suitable for most relevant applications in the steel industry

Why methane pyrolysis?

1

- > Very low energy input
- > Low CO₂ emissions
 - > Potentially, zero emissions, if only renewables are utilized

LEGEND

bio-methane

renewable energy grid electricity

nuclear energy lignite coal

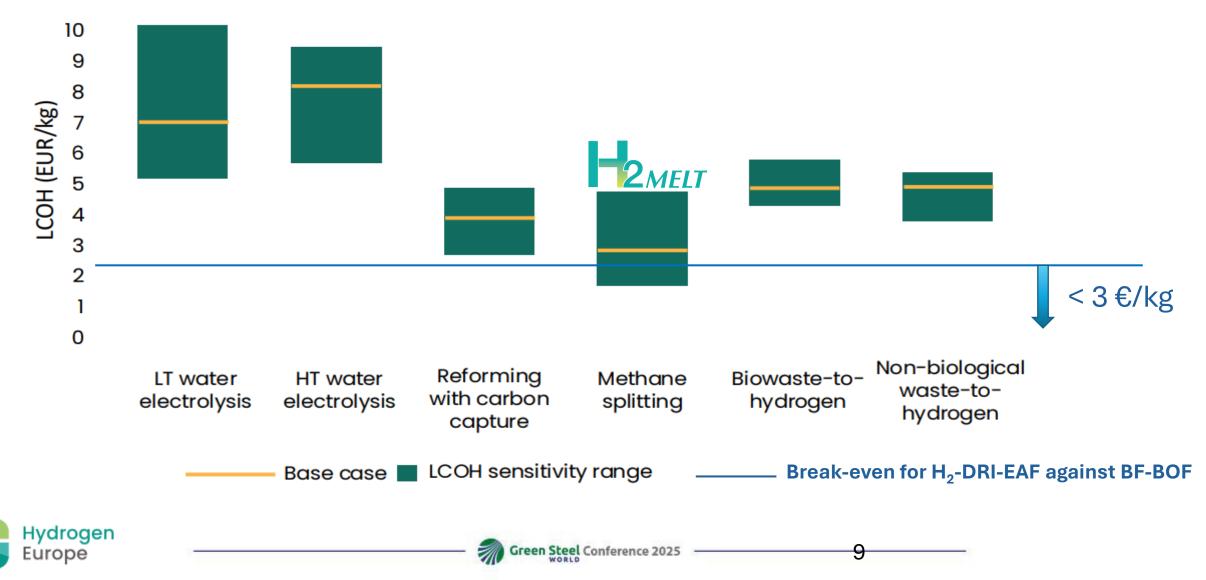
bituminous coa electrolysis thermochemical

thermal electrolysis CO₂ emitted

CO₂ sequestered solid carbon produc pure oxygen gas chemical product

 \Diamond water natural gas

64


5-63

HYDROGEN "COLORS"

	HYDROGEN SOURCE	ENERGY SOURCE	PRODUCTION PROCESS	BY- PRODUCT	TONS CO ₂ PER TON H ₂
GREEN	٥		₽ ₽ ₽	Ġ,	0
YELLOW	٥	套	₽ ₽ ₽	ج ا	+16.4
	Ì	ŵ	ً	$\overline{\mathbb{A}}$	0
	5-63	5-R)	ً	\mathbb{A}	-10.9
BLUE	୦ଝ	\$ 6	ً	₽.	0
PURPLE	٥	æ	Ŧ	Ô,	0
PINK	٥	æ	Ęţ	Å	0
RED	٥	æ	ً	Ġ,	0
GRAY	୦ଝ	ŝ	\boxtimes	÷.	+7.5
BROWN	٥	5	\boxtimes	(A)	+13.4
BLACK	٥	57		۲. ۲. ۲.	+13.4
WHITE	\Diamond	套	Ęţ		

Ο

Competitive cost advantage

Unique technology benefits

- Attractive production cost
 - Hydrogen delivery cost < 3 Euro/kg
- Large scale potential
 - Feed stock & infrastructure already available
- Zero direct emissions
 - Even a CO₂ sink when operation with bio-methane
- Supply of solid carbon as valuable by product

10

Carbon - Valuable product

4 kg CH₄ \rightarrow 3 kg C + 1 kg H₂

- Additional revenues
- Multiple large volume applications:
 - Carbon black
 - Asphalt

11

- Refractories, casting powder, ...
- Agriculture
- Super-flexible production as carbon properties can be adjusted widely

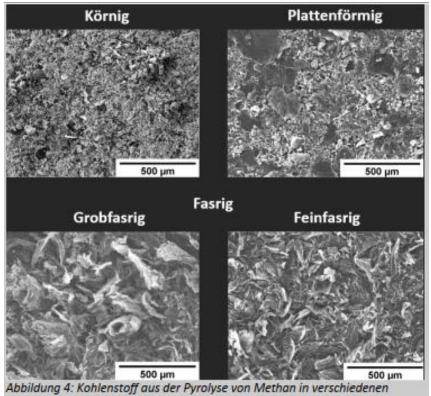
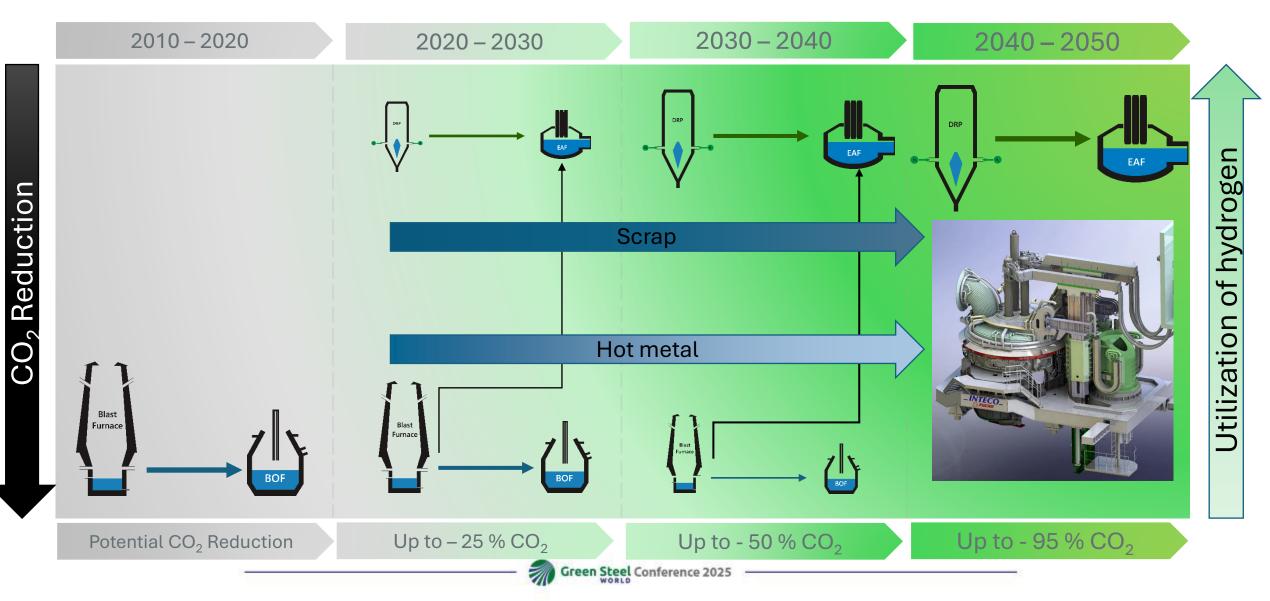



Abbildung 4: Kohlenstoff aus der Pyrolyse von Methan in verschiedenen flüssigen Metallbädern: Bi-Ni-Legierung (oben links), Ni-In-Legierung (oben rechts), Sn-Ni-Legierung (unten links) sowie Cu-In-Legierung (unten rechts)

EAF as future core unit

H-based direct reduction

Basically, all processes (Midrex, Energiron, Circored, ...) can operate with a quite wide range of natural gas/hydrogen mixtures.

A certain carbon content in the DRI is required (typically ~ 1.5 %) and can be reached by proper selection of natural gas / hydrogen mix.

Typically, ~ 55 – 60 kg H_2 / t DRI are necessary.

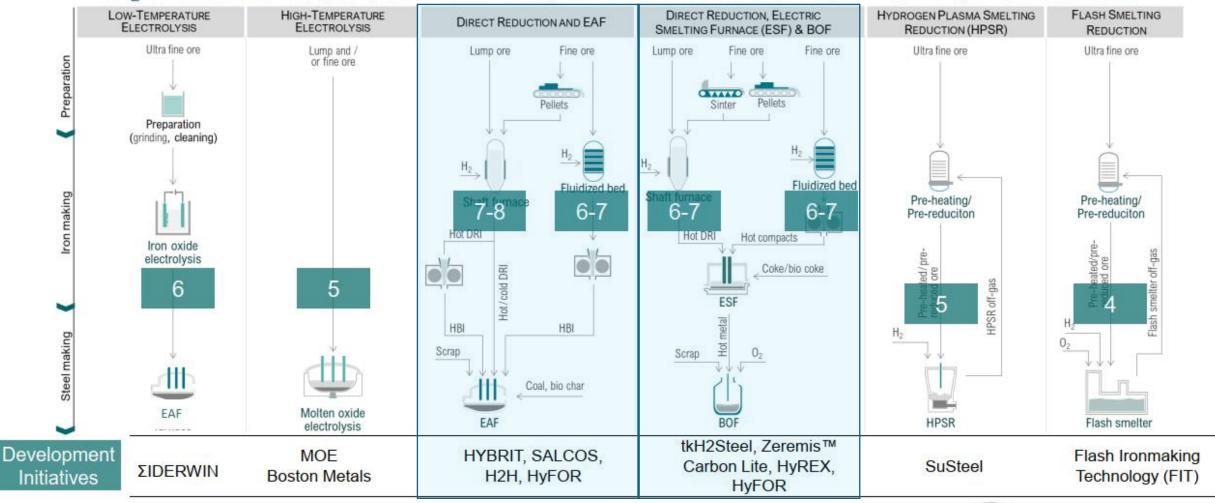
Pyrolysis-hydrogen for DRI plants

- Mixgas (H₂/ residual CH₄) beneficial for C-content in DRI
 - "Electrolysis quality" by far not required for the process
- Temperature of H₂ gas well suited for DRI
 - Process temperature starting from 650 °C
- High pressure process → reduced need for gas compression
 DRI-Process pressure ~ 4 bar
- Much lower energy consumption compared to $\rm H_2$ generated by electrolysis

Some transformation projects

Plant		DRI Capacity (Mtpa)	Reducing Gas	Commission Year	Notes
H2 green steel	H2 Green Steel	2.1	H ₂	2025	First Phase (Electrolyser capacity of more than 700MW, Midrex technology)
	SSAB, HYBRIT (Demonstration Plant)	1.3	H ₂	2025	
	Salzgitter	2	Mixed NG and H2	2026	First Phase (100MW electrolyser, Energiron ZR)
thyssenkrupp	Thyssenkrupp	2.5	$NG \longrightarrow H_2$	2026	Midrex technology
ArcelorMittal	ArcelorMittal Canada (Dofasco)	2.5	$NG \longrightarrow H_2$	2026	Energiron ZR
ArcelorMittal	ArcelorMittal France (Dunkirk)	2.5	H ₂ (NG)	2027	It is not clear whether the plan is to start with hydrogen or initially utilise gas, aligning with the approach seen in other ArcelorMittal operations in the EU.
ArcelorMittal	ArcelorMittal Belgium (Ghent)	2.5	$NG \longrightarrow H_2$	Prior to 2030	
ArcelorMittal	ArcelorMittal Spain (Asturias)	2.3	$NG \longrightarrow H_2$	2025	Supply both Asturias and Sestao plant

Plant		DRI Capacity (Mtpa)	Reducing Gas	Commission Year	Notes
Arcelor/Miltal Bremen a	ArcelorMittal Germany and Eisenhüttenstadt)	~2 in Bremen	$NG \longrightarrow H_2$	2030	Additional H ₂ required in Eisenhüttenstadt will be generated from gas with the help of a pyrolysis plant
W LIBERTY	Liberty Steel Group (Whyalla, Australia)	1.8	Mixed NG and H ₂	2025	
	Liberty Steel Group (Dunkirk, France)	2	Mixed NG and H ₂		1GW H ₂
	Liberty Steel Group (Galati, Romania)	2.5	$NG \longrightarrow H_2$	2027-2030	
TATA STEEL	Tata Steel Netherlands			Before 2030	Energiron ZR
VULCAN GREEN STEEL	Vulcan Green Steel (Oman)	2.5 first phase	$NG \longrightarrow H_2$	2026	Energiron ZR
BAOSTEEL	Baosteel Zhanjiang Iron & Steel Co	1	Mixed NG, H ₂ and Coke Oven Gas (COG)	Commenced on 1 January 2024	The new Energiron plant will mainly use H ₂ as reducing gas, with the possibility to mix it with NG and COG
омк	OMK (Russia)	2.5	NG	2025	It might be adapted to use hydrogen
POSC	0.3 mio tpy				
Hyrex plant					


15

- DRI plants between 1 2.5 mio tpy
- Most projects will start with natural gas or mix gas

Green Steel Conference 2025

High TRL processes available

CO₂-free Steelmaking Routes – Technological readiness level (TRL) and development initiatives

LEOBEN

Case study: 1 mio tpy DRI

		CASE 1	CASE 2	CASE 3	CASE "INTECO"	
		DR Plant based on NG (BASE CASE)	DR Plant with H ₂ addition	H ₂ DR Plant	DR Plant with 75 % H₂	
			(30% H ₂ share on reduction work)	(100% H ₂ share on reduction work)		
H ₂ used	(Nm³/h)	0	24,000	81,250	5.5 ton H_2 per hour	
	(kg/h)	0	2,200	7,300	0.0 101112 por 11001	
Energy input:						
- Hydrogen (H ₂)) (mmBTU)	0.0	2.0	6.6		
- Natural gas	(mmBTU)	<u>9.9</u>	<u>7.7</u>	$2.5^{**)}$		
- Total	(mmBTU)	9.9	9.7	9.1		
- H ₂ energy/tota	al energy	0% H ₂	20.2 % H ₂	72.8 % H ₂		
Carbon content	in DRI ^{*)}	2.5 wt%	~2 wt%	~0 wt%	~ 1.3 wt %	

*) in case required, the carbon content of the DRI for Case 1 could also be increased to > 3.5%

**) used for heating of the reducing gas

MIDREX H₂ – The Road to CO2-free Direct Reduction

Robert Millner¹, Johannes Rothberger¹, Barbara Rammer¹, Christian Boehm¹, Wolfgang Sterrer¹, Hanspeter Ofner¹, Vincent Chevrier² 18

75 % H₂ in process gas

	[t/h]	[tpy]	
DRI	125	1 000 000	Based on 8 000 hours / year
Pellets	177	1 420 000	
Hydrogen	5.5	44 000	Based on 75 % H ₂ content
Carbon product	16.5	132 000	Density only 0.05!
Slag (steel plant)		150 000	100 – 150 kg/t liquid steel

Energy demand

1 Mio t DRI@1.3 % C (1.5 – 3 Mio t liquid steel)

	Pyrolysis	
Specific energy	16.5 kWh/kg	
Hydrogen demand	44 000 tpy	75 % H ₂ content in process gas
Annual energy demand	~ 726 000 MWh	
Power requirement	90 MW	Based on 8000 hpy

Note: Power requirement for 1 Mio tpy EAF is also in the range of 90 MW

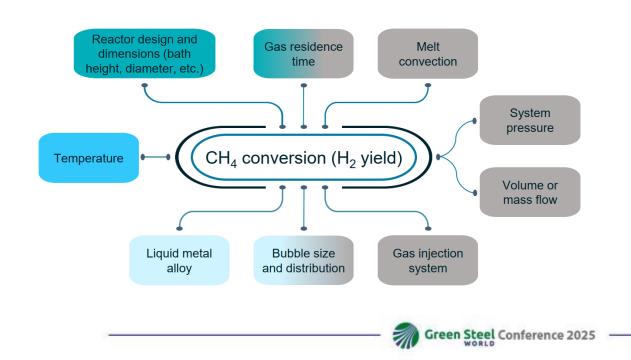
INTECO PTI Hybrid burner

Ready to operate with any available H₂/NG mixture

- Replace/reduce need of natural gas
- Seamless integration into JetBOx & SwingDoor

Enables economic green steel production

- Super-flexible hydrogen and carbon production
- Attractive hydrogen delivery cost
- Scalable range of H₂ & CH₄ in product gas
 - Tailored to process requirement
- Infrastructure and feedstock available



Unique demonstration plant

Research center for Hydrogen and CarbonUnique

• Tailored optimization of process parameter

DISCLAIMER

INTECO melting and casting technologies GmbH

Wienerstrasse 25 A-8600 Bruck an der Mur

Tel.: +43 (0)3862 53110 0 Fax: +43 (0)3862 53844 Email: <u>inteco.austria@inteco.at</u> Contact: Dr. Harald Holzgruber

Have an eye on our technology www.inteco.at

© INTECO melting and casting technologies GmbH. All rights reserved.

The content of this presentation is subject to copyright. Unauthorized use, reproduction or transfer of the content, or of parts of this content, is prohibited. Please contact the publisher concerning permission to use the content.