

ELECTRIFCATION OF HEATING PROCESSES

DILIP CHANDRASEKARAN BUSINESS DEVELOPMENT MANAGER STEEL, KANTHAL

SAFETY FIRST

Kanthal's objective is zero harm to our people, the environment we work in, our customers and our suppliers.

CONTENT

INTRODUCTION TO KANTHAL

WHY ELECTRIFICATION OF HEATING PROCESSES

ELECTRIFICATION AS ENABLER FOR FOSSIL FREE STEEL

APPLICATION EXAMPLES WITHIN STEEL PROCESSING CONTINUOUS ANNEALING

SUMMARY AND CONCLUSIONS

OUR PURPOSE IN THE FOREFRONT OF SUSTAINABLE HEATING TECHNOLOGY TO IMPROVE LIFE FOR PEOPLE AND PLANET

Green Steel World 2023

KANTHAL – BRAND FOR HEATING TECHNOLOGY

- Heating Materials resistance heating and high temperature alloys for temperatures up to 1850°C
- Heating Systems products, components, systems and services for thermal processing
- Broadest range of products and systems for industrial heating, from raw material to finished products
- Global R&D-organisation with in-depth competence within high temperature materials and applications

WE ACCELERATE ELECTRIFICATION FOR A SUSTAINABLE FUTURE

ELECTRIFICATION BENEFITS

Five key benefits of electric heating compared with fossil

Up to 95% efficiency

Excellent temperature control: ± 1°C

Reduction of CO2 emissions, zero if renewable energy is used

Elimination thermal NOx and SOx emissions

Safer and quieter production environment

ENABLER – GAS TO ELECTRIC

- Unique high temperature materials portfolio
 - Metallic materials (NiCr and FeCrAl) upto 1400°C
 - Globar[®] SiC upto 1600°C
 - Kanthal[®] Super MoSi2 upto 1850°C
- Wide range of temperatures and atmospheres
- Extensive application know-how
- Pilot-scale testing and Modelling capabilities

PRODUCTS AND SOLUTIONS FOR FOSSIL FREE PRODUCTION

Resistance materials and Heating solutions

ELECTRIC POTENTIAL IN STEEL MAKING

Ironmaking (Main CO2-source)

- Pre-heating of gas in BF
- Heating of hydrogen for DRI

Steelmaking

- Ladle heating
- Tundish heating
- Ingot heating
- Re-heating (Major CO2-source)
- Annealing

ELECTRIC POTENTIAL IN STEEL MAKING

Ironmaking (Main CO2-source)

- Pre-heating of gas in BF
- Heating of hydrogen for DRI

Steelmaking

- Ladle heating
- Tundish heating
- Ingot heating
- Re-heating (Major CO2-source)
- Annealing

ELECTRIC GAS HEATING -IRONMAKING

ELECTRIC PROCESS GAS HEATING SOLUTIONS

HEATING CASSETTES

Forced convection furnaces

Air/gas T ≤ 800°C

Compact element design (Porcupine) for optimized heat transfer and maximized power outputs.

KANTHAL® FLOW HEATERS

customized solutions for higher

Air and gas heating

Outlet $T \le 1100^{\circ}C$

power levels

Compact design

Standard 3.5-60 kW and

KANTHAL[®] PGH 1 Air and gas heating Outlet T ≤ 1100°C 100 kW to 100' s MW Pressures ≤ 10 bar Low pressure drop

KANTHAL® PGH 2 Air and gas heating Outlet $T \le 1100$ °C 100 kW to 100' s MW Pressures ≤ 10 bar Robust design

ELECTRIC POTENTIAL IN STEEL MAKING

Ironmaking (Main CO2-source)

- Pre-heating of gas in BF
- Heating of hydrogen for DRI

Steelmaking

- Ladle heating
- Tundish heating
- Ingot heating
- Re-heating (Major CO2-source)
- Annealing

CONTINUOUS ANNEALING

CURRENT HEATING SOLUTION

- Continuous furnaces for annealing and galvanizing of steel strip
- Atmosphere: 95%N2-5%H2, Temperature around 1000 C
- Heated with gas burners in Ni-Cr radiant tubes (W, U, P-type)
- Large power requirement (100-200 kW per burner) or 20-30 MW per furnace

ELECTRIFICATION OF CONTINUOUS ANNEALING

- One gas-fired W-tube can be replaced with two electric heating units (Tubothal[®] and radiant tube)
- Eliminate emissions
- Higher efficiencies
- High temperature control
- Lower maintenance
- Longer lifetime

ELECTRIC POTENTIAL IN STEEL MAKING

Ironmaking (Main CO2-source)

- Pre-heating of gas in BF
- Heating of hydrogen for DRI

Steelmaking

- Ladle heating
- Tundish heating
- Ingot heating
- Re-heating (Major CO2-source)
- Annealing

LADLE AND TUNDISH HEATING

- Heating of tundishes and ladles in secondary steelmaking drying and pre-heating processes
- Current state gas-fired, open burners with low overall efficiency, noisy and generating CO2-emissions
- Challenges with power density, heating times and heating bottom of large ladles
- Electrification with ceramic heating solutions (SiC, MoSi2) *Remove emissions, Quiter, Temperatur control*

RE-HEATING FURNACES

- Heating of slabs, billets and other product forms prior to forming operations
- Typically gas fired (open burners) with large power requirement (10-50 MW per furnace), high power density and temperature
- Electric heating solution validated on smaller scale @Kanthal
- Scale-up and develop for continous 24/7 operation
- Remove emissions, higher thermal efficiency, improved yield (controlled atmosphere)

RE-HEATING FURNACES

- Heating of slabs, billets and other product forms prior to forming operations
- Typically gas fired (open burners) with large power requirement (10-50 MW per furnace), high power density and temperature
- Electric heating solution validated on smaller scale @Kanthal
- Scale-up and develop for continous 24/7 operation
- Remove emissions, higher thermal efficiency, improved yield (controlled atmosphere)

SUMMARY AND CONCLUSIONS

- Large-scale heating solutions needed to replace existing heating with gas-burner technology for steel industry
- Resistance heating offers potential to replace fossil-fired heating to CO2-free in steel operations
- New large-scale electric heating solutions
 under development
- Challenge in reaching required power density, temperature and robust solution
- Vital with collaborations and partnerships across businesses and organisations

WE KNOW ELECTRIC HEATING TECHNOLOGY

THANK YOU! QUESTIONS?

